
Journal of Sound and <ibration (1999) 226(4), 799}805
Article No. jsvi.1999.2288, available online at http://www.idealibrary.com on

0

COMMENTS ON ‘‘A FREQUENCY DOMAIN BASED
NUMERIC-ANALYTICAL METHOD FOR NON-LINEAR DYNAMICAL

SYSTEMS’’

R. VAN DOOREN

Department of Mechanical Engineering, Free ;niversity of Brussels, Pleinlaan 2,
B-1050 Brussels, Belgium

(Received 19 March 1999)
The authors S. Narayanan and P. Sekar are to be congratulated with their very
interesting paper [1] on a multi-harmonic balance technique for determining
periodic orbits in non-linear dynamical systems. It is important that the
method can deal with all types of excitations and non-linearities and that it can also
treat higher-dimensional systems. In this method the non-linear di!erential
equations are transformed into a non-linear system of algebraic equations in terms
of the Fourier coe$cients of the periodic solutions. The so-called Fourier}
Galerkin}Newton method is established such that algorithms based on the
fast Fourier transform and on the discrete Fourier transform can be applied.
The transitions from stable to unstable periodic orbits are studied by the use
of the Floquet theory. The continuation of a particular solution branch is
performed through a predictor}corrector method. A cubic extrapolation pro-
cedure is applied for prediction and a least-squares minimization in conjunction
with singular value decomposition is used for correction. The e$ciency of the
method has been illustrated with two examples on impact and contact
vibrations.

I should like to make two comments on their paper. The "rst comment is
concerned with example 1 on the impacting non-linear oscillator governed by the
di!erential equation

xK#2fxR #x#g(x, xR )"P cos(ut), (1)

with

g (x, xR )"G
C

H
(x!d)3@2 (1#bxR ) for x'd

0 for x)d,
(2)

where f is the linear damping coe$cient, C
H

is the Hertzian constant, b is the
hysteretic damping parameter, P and u are the amplitude and the frequency of
the periodic excitation. The dots represent di!erentiation with respect to time t. The
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Figure 1. Phase plane plot showing the cases b"0)0 and 0)1 for example 1 (f"0)05, C
H
"10)0,

d"0)0, P"10)0, u"1)2).
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parameters mentioned in reference [1] in the caption of Figure 1 and in the line just
preceding this "gure are: f"0)05, b"0)0, C

H
"10)0, d"0)0, P"10)0, u"1)2. It

has been pointed out that the mentioned value of b"0)0 is not the correct one. The
plot of the orbit in the phase plane for the case b"0)0 is as given in Figure 1 of this
Letter. Numerical experiments with several values of b have been considered. This
reveals that the phase portrait in Figure 1 from reference [1] (the curve indicated
by the digits 5, 6, 7, 8 for iterations and the abbreviation NI for applying the
numerical integration method) corresponds to the case b"0)1. For comparison
both cases b"0)0 and 0)1 have been represented in Figure 1 of this Letter.

The second comment applies to example 2 on the vibrations of two elastic bodies
in rolling contact, one with a smooth surface and the other with a wavy surface. The
contact is assumed to be Hertzian. The equation of contact vibration can be written
as [1]

xK#2fxR #(2/3)[H(x)x3@2!1]"!m
0
X[X cos(Xt)#2f sin(Xt)], (3)

where H(x) is the Heaviside unit step function. Equation (3) has been solved in
reference [1] by the Fourier}Galerkin}Newton method with the discrete Fourier
transform in conjunction with the path following algorithm and the stability
analysis according to the Floquet theory. Period -1, -2, -4 and -3 orbits have been
found in the range of the frequency X varying from 0)0 to 3)0. However, the period
-6 orbit in the vicinity of X"1)87 with f"0)05 and m

0
"0)5 has not been

mentioned. For X"1)87 one has the coexistence of period -3, -2 and 6 orbits as far
as the stable orbits are concerned (unstable period-1 and -3 orbits also occur).
Period -6 orbit is readily found by direct numerical integration of equation (3)



Figure 2. Phase plane plot of the period-6 orbit for example 2 (f"0)05, m
0
"0)5, X"1)87).
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starting, e.g. from the initial point x"1, xR "0 in the phase plane (the so-called
brute force method). The orbit is spiralling towards the limit cycle. This last one is
represented in Figure 2. The co-ordinates (x, xR ) of the PoincareH section points
corresponding to t"0 in the phase plane are found as follows:

period-3: (!2)9277, !0)5727), (!1)1872, 1)4932), (3)0977, !1)8027);
period-2: (2)6234, !0)4391), (0)0122, 0)2069);
period-6: (0)4601, 0)1826), (2)4450, !0)5564), (0)1865, 0)3238),

(2)5912, !0)7294), (!0)3109, 0)1742), (2)5967, !0)0316).

The six PoincareH section points of the period-6 orbit occur in two clusters, each
group of three points surrounding one of the PoincareH section points representing
the period-2 orbit.

It is highly instructive to determine the basins of attraction of the period -3, -2
and -6 orbits. A grid of initial conditions in the relevant phase space is taken and
time integrations of equation (3) are performed for each of these initial conditions.
A di!erent level of grey is assigned to each initial condition related to the distinct
steady state attractor that the orbit approaches (see reference [2]). Figure 3 shows
the basins of attraction for X"1)87, f"0)05 and m

0
"0)5 in the phase plane with

!4)x)4 and !4)xR )4 and with resolution 200]200. This "gure was
obtained from Nusse and Yorke's package DYNAMICS [3]. The coherent black
domain is the basin of the period-3 orbit. The basins of the period-2 and -6 orbits
are intertwined. The dark grey region is the basin of attraction of the period-6 orbit
and the light grey region corresponds to the period-2 orbit.

A careful study of the continuation of the period-6 orbit is needed. In the
continuation technique based on the shooting method [4}6] equation (3) is



Figure 3. Basins of attraction for example 2 (f"0)05, m
0
"0)5, X"1)87). Coherent domain:

period-3, in black. Intertwined domain: period-6, in dark grey; period-2, in light grey.
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rewritten as

x5 "X(x, t) , (4)

in which x is two-dimensional. Chose x as the starting point of the procedure. One
considers the system of the "rst variational equations derived from the original
system (4) with respect to the reference solution x (t, x

0
) having the relevant

period ¹:

z5 "Xx[x (t, x
0
) , t]z , (5)

where Xx denotes the corresponding partial derivative. Let U(t) be the fundamental
matrix of the system of the "rst variational equations with initial condition
U(0)"I, I being the identity matrix. In the shooting method the starting point x

0
is

ameliorated in an iterative manner by determining the correction vector
Dx

0
"x

/%8
!x

0
. This vector is the solution of the system of linear equations

[I!U(¹)]Dx
0
"r

0
, (6)

where r
0
"x (¹, x

0
)!x

0
, i.e. the error at the end t"¹ of the numerical

integration of equation (4). The stability of the periodic orbit is investigated by
applying the Floquet theory. Transitions from stable to unstable solutions occur
when one of the eigenvalues of the matrix U(¹) crosses the unit circle in the
complex plane.

The results of the continuation procedure taking small changes of the frequency
parameter X are illustrated in Figure 4 which represents the amplitude of the



Figure 4. Response amplitude diagram of the period-2 and -6 orbits and their bifurcations in
example 2 for 1)830)X)1)893 (f"0)05, m

0
"0)5), ** stable; - - - -, unstable.
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relevant vibration, de"ned as A"(x
.!9

!x
.*/

)/2, in the frequency domain ranging
from 1)830 to 1)893 with f"0)05 and m

0
"0)5. The period-6 orbit appears at

a value of X slightly below X"1)8933 with one of the eigenvalues near to the value
#1. If X is decreased the stable period-6 orbit loses stability at the transition value
X"1)86156 for which one of the eigenvalues passes through the value !1. At this
value of X a bifurcation to a stable period-12 orbit takes place. The next transition
from period-12 to period-24 occurs at X"1)85078. The transition from period-24
to period-48 is found to occur at X"1)84845. Note that the amplitudes of these
periodic solutions fall within the amplitude range from 0)0 to 5)0 considered in
Figure 5 in reference [1]. In Figure 4 of this Letter full lines indicate stable orbits
and dotted lines represent unstable orbits. The arrow shows the transition point for
the bifurcation from period-12 to period-24 orbit. The unstable branches for
period-12 and -24 orbits have been omitted for clarity. The amplitudes of the
period-2 and 4 orbits from Figure 5 in reference [1] have been redrawn in Figure 4.
The amplitudes of the period-6, -12 and -24 orbits are higher than those of the
period-2 and -4 orbits. It has been pointed out that the continuation of the left part
of the period-6 solution remains unstable until at least X"1)6.

In conclusion, since the basins of attraction of the period-2 and -6 orbits (or their
bifurcated orbits) are intertwined, the existence and characteristics of the period-6
orbit and its bifurcations for equation (3) should be mentioned.
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The authors wish to thank R. Van Dooren [1] for his interest in our paper [2] and
for his general appreciation of the scheme of the numeric-analytical method
presented in the paper for determining periodic orbits of non-linear dynamical
systems which can treat di!erent types of excitations and non-linearities and which
can treat higher-dimensional systems.

As far as the comments of Van Dooren, we make the following observations.
The aim of the paper was to present a frequency domain based

numeric-analytical method coupled with a stability analysis and path following
approach. The e$cacy of the iteration scheme was demonstrated in example 1 of
reference [2] by showing how the successive iterations approach the accurate
solution from the initial arbitarily chosen one. Example 2 was used to demonstrate
the stability analysis and path following approach.

As has been pointed out by Van Dooren the value of b in the caption of Figure
1 of reference [2] as well as the line just preceding the "gure should have been
b"0.1 and not b"0. Since the problem was solved for many values of b, this error
had inadvertantly crept in. We wish to thank Van Dooren for the correction.

The numeric-analytical algorithm presented in reference [2] was used to trace
the response curve of example 2 starting from the point &a' in Figure 5. The fold
bifurcation points b and c and #ip bifurcation points d and e were detected by
stability analysis while the response curve was traced. Period-2 motion which
bifurcated from the point e(#ip) was further traced which goes along points f (#ip),
g (#ip), h (fold) and ultimately merged with point d (#ip-subcritical). Period-4
motion bifurcated from the point f was also traced which merged with point g. This
exercise demonstrated the stability analysis and path following approach.

While determining the domains of attraction we discovered the presence of
remote period-3 motion and then we traced its response curve [3]. However, we did
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